Institutional Repository of Radio Astronomy Research Laboratory
Studies of the distinct regions due to CO selective dissociation in the Aquila molecular cloud | |
Komesh, Toktarkhan1,2,3![]() ![]() ![]() ![]() ![]() ![]() | |
2020-12-01 | |
Source Publication | ASTRONOMY & ASTROPHYSICS
![]() |
ISSN | 0004-6361 |
Volume | 644Pages:A46 |
Contribution Rank | 1 |
Abstract | Aims. We investigate the role of selective dissociation in the process of star formation by comparing the physical parameters of protostellar-prestellar cores and the selected regions with the CO isotope distributions in photo-dissociation regions. We seek to understand whether there is a better connection between the evolutionary age of star forming regions and the effect of selective dissociationMethods. We used wide-field observations of theO (J = 1-0) emission lines to study the ongoing star formation activity in the Aquila molecular region, and we used the 70 and 250 mu m data to describe the heating of the surrounding material and as an indicator of the evolutionary age of the core.Results. The protostellar-prestellar cores are found at locations with the highest CO column densities and their increasing evolutionary age coincides with an increasing 70 mu m/250 mu m emission ratio at their location. The evolutionary age of the cores may also follow from the CO versus CO abundance ratio, which decreases with increasing CO column densities. The original mass has been estimated for nine representative star formation regions and the original mass of the region correlates well with the integrated 70 mu m flux density. Similarly, the X ratio, which provides the dissociation rate for these regions correlates with the 70 mu m/250 mu m flux density ratio and reflects the evolutionary age of the star formation activity. |
Keyword | ISM: clouds evolution ISM: abundances ISM: molecules photon-dominated region stars: formation |
DOI | 10.1051/0004-6361/202038632 |
URL | 查看原文 |
Indexed By | SCI |
Language | 英语 |
WOS Keyword | DUST ; PHOTODISSOCIATION ; EXCITATION ; GAS |
Funding Project | CAS-TWAS President's Fellowship for International Doctoral Students ; National Natural Science foundation of China[11433008] ; National Natural Science foundation of China[11973076] ; National Natural Science foundation of China[11703074] ; National Natural Science foundation of China[11703073] ; National Natural Science foundation of China[11603063] ; Chinese Academy of Sciences President's International Fellowship Initiative[2021VMA0008] ; Chinese Academy of Sciences President's International Fellowship Initiative[2019VMA0040] ; University of Malaya[UMRG FG033-017AFR] |
WOS Research Area | Astronomy & Astrophysics |
WOS Subject | Astronomy & Astrophysics |
WOS ID | WOS:000596605000001 |
Publisher | EDP SCIENCES S A |
Funding Organization | CAS-TWAS President's Fellowship for International Doctoral Students ; National Natural Science foundation of China ; Chinese Academy of Sciences President's International Fellowship Initiative ; University of Malaya |
Citation statistics | |
Document Type | 期刊论文 |
Identifier | http://ir.xao.ac.cn/handle/45760611-7/3791 |
Collection | 射电天文研究室_恒星形成与演化研究团组 射电天文研究室 |
Corresponding Author | Komesh, Toktarkhan; Baan, Willem; Esimbek, Jarken |
Affiliation | 1.Chinese Acad Sci, Xinjiang Astron Observ, Urumqi 830011, Peoples R China 2.Univ Chinese Acad Sci, Beijing 100080, Peoples R China 3.Al Farabi Kazakh Natl Univ, Fac Phys & Technol, Dept Solid State Phys & Nonlinear Phys, Alma Ata 050040, Kazakhstan 4.ASTRON, Netherlands Inst Radio Astron, NL-7991 PD Dwingeloo, Netherlands 5.Chinese Acad Sci, Key Lab Radio Astron, Urumqi 830011, Peoples R China 6.Univ Malaya, Dept Phys, Fac Sci, Kuala Lumpur 50603, Malaysia |
First Author Affilication | Xinjiang Astronomical Observatory, Chinese Academy of Sciences |
Corresponding Author Affilication | Xinjiang Astronomical Observatory, Chinese Academy of Sciences |
Recommended Citation GB/T 7714 | Komesh, Toktarkhan,Baan, Willem,Esimbek, Jarken,et al. Studies of the distinct regions due to CO selective dissociation in the Aquila molecular cloud[J]. ASTRONOMY & ASTROPHYSICS,2020,644:A46. |
APA | Komesh, Toktarkhan.,Baan, Willem.,Esimbek, Jarken.,Zhou, Jianjun.,Li, Dalei.,...&Ibraimov, Margulan.(2020).Studies of the distinct regions due to CO selective dissociation in the Aquila molecular cloud.ASTRONOMY & ASTROPHYSICS,644,A46. |
MLA | Komesh, Toktarkhan,et al."Studies of the distinct regions due to CO selective dissociation in the Aquila molecular cloud".ASTRONOMY & ASTROPHYSICS 644(2020):A46. |
Files in This Item: | ||||||
File Name/Size | DocType | Version | Access | License | ||
Komesh-2020-Studies (1260KB) | 期刊论文 | 出版稿 | 开放获取 | CC BY-NC-SA | View Application Full Text |
Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.
Edit Comment