XAO OpenIR  > 射电天文研究室  > 星系宇宙学研究团组
基于L-BFGS-B局部极小化的自适应尺度CLEAN算法
Alternative TitleAn Adaptive Scale CLEAN Algorithm Based on L-BFGS-B Local Minimization
张利1; 肖一凡1; 米立功1; 卢梅1; 赵庆超1; 王蓓1; 刘祥2; 张明2; 谢泉1
2021
Source Publication贵州大学学报(自然科学版)
ISSN1000-5269
Volume38Issue:1Pages:38-44
Contribution Rank2
Abstract干涉阵列存在的点扩展函数旁瓣使得观测到的射电源出现不同程度的失真,对重建宇宙真实结构图景和理解宇宙起源造成影响。为解决观测中出现的伪影,本文在现有的CLEAN算法的基础上,提出了基于L-BFGS-B局部极小化的自适应尺度CLEAN算法。首先,基于L-BFGSB局部极小化算法通过最小化目标函数,寻找最优分量,构建自适应尺度模型;其次,通过CASA实现对测试图像的重建,对比目前广泛使用的H9gbom CLEAN算法的重建图像,评估本文算法性能;最后,对反卷积算法在射电天文图像处理领域的发展做出展望。测试结果表明:相比于传统的算法,本文提出的算法能够构建更加精准的天空亮度分布,为天文图像重建提供一种新的方案。
Other AbstractThe sidelobes of point-spread function in interferometer arrays make the observed radio sources have varying degrees of distortion, which affects the reconstruction of the real structure of the universe and the understanding of the origin of the universe. In order to solve the artifacts in observation, on the basis of the existing CLEAN algorithm, this paper proposes an adaptive scale CLEAN algorithm based on L-BFGS-B local minimization. Firstly, based on the L-BFGS-B local minimization algorithm, an adaptive scale model is constructed by minimizing the objective function and finding the optimal component; secondly, to evaluate the performance of the proposed algorithm; the test image is reconstructed through CASA, which is compared with the widely used Hogbom CLEAN algorithm; finally, the development of deconvolution algorithm in radio astronomy image processing is prospected. The results show that compared with the traditional algorithm, the algorithm proposed can build a more accurate sky brightness distribution, which provide a new scheme for the reconstruction of astronomical images.
KeywordL-BFGS-B算法 自适应尺度CLEAN算法 射电天文图像处理
DOI10.14005/j.cnki.issn1672-7673.20210528.004
Indexed By其他
Language中文
Citation statistics
Document Type期刊论文
Identifierhttp://ir.xao.ac.cn/handle/45760611-7/4695
Collection射电天文研究室_星系宇宙学研究团组
Corresponding Author张利
Affiliation1.贵州大学大数据与信息工程学院,贵州贵阳550025;
2.中国科学院新疆天文台,新疆乌鲁木齐830011
Recommended Citation
GB/T 7714
张利,肖一凡,米立功,等. 基于L-BFGS-B局部极小化的自适应尺度CLEAN算法[J]. 贵州大学学报(自然科学版),2021,38(1):38-44.
APA 张利.,肖一凡.,米立功.,卢梅.,赵庆超.,...&谢泉.(2021).基于L-BFGS-B局部极小化的自适应尺度CLEAN算法.贵州大学学报(自然科学版),38(1),38-44.
MLA 张利,et al."基于L-BFGS-B局部极小化的自适应尺度CLEAN算法".贵州大学学报(自然科学版) 38.1(2021):38-44.
Files in This Item:
File Name/Size DocType Version Access License
张利-2021-基于L-BFGS-B局部(1929KB)期刊论文出版稿开放获取CC BY-NC-SAView Application Full Text
Related Services
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Google Scholar
Similar articles in Google Scholar
[张利]'s Articles
[肖一凡]'s Articles
[米立功]'s Articles
Baidu academic
Similar articles in Baidu academic
[张利]'s Articles
[肖一凡]'s Articles
[米立功]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[张利]'s Articles
[肖一凡]'s Articles
[米立功]'s Articles
Terms of Use
No data!
Social Bookmark/Share
File name: 张利-2021-基于L-BFGS-B局部极小化的自适应尺度CLEAN算法.pdf
Format: Adobe PDF
This file does not support browsing at this time
All comments (0)
No comment.
 

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.