Institutional Repository of Radio Astronomy Research Laboratory
The JCMT BISTRO Survey: Evidence for Pinched Magnetic Fields in Quiescent Filaments of NGC 1333 | |
Doi, Y.1; Tomisaka, K.2; Hasegawa, T.2; Coude, S.3,4; Arzoumanian, D.2,5; Bastien, P.4,6; Matsumura, M.7; Tahani, M.8; Sadavoy, S.9; Hull, C. L. H.10,11; Johnstone, D.12,13; Di Francesco, J.12,13; Shimajiri, Y.2,14; Furuya, R. S.15; Kwon, J.16; Tamura, M.2,16,17; Ward-Thompson, D.18; Le Gouellec, V. J. M.19,20; Hoang, T.21,22; Kirchschlager, F.23; Hwang, J.21,22; Eswaraiah, C.24; Koch, P. M.35; Whitworth, A. P.25; Pattle, K.23; Kwon, W.26,27; Kang, J.21; Inutsuka, S.36; Bourke, T. L.28,29; Tang, X. D.30![]() | |
2021-12-01 | |
Source Publication | Astrophysical Journal Letters
![]() |
ISSN | 2041-8205 |
Volume | 923Issue:1Pages:12L9 |
Contribution Rank | 30 |
Abstract | We investigate the internal 3D magnetic structure of dense interstellar filaments within NGC 1333 using polarization data at 850 mu m from the B-fields In STar-forming Region Observations survey at the James Clerk Maxwell Telescope. Theoretical models predict that the magnetic field lines in a filament will tend to be dragged radially inward (i.e., pinched) toward the central axis due to the filament's self-gravity. We study the cross-sectional profiles of the total intensity (I) and polarized intensity (PI) of dust emission in four segments of filaments unaffected by local star formation that are expected to retain a pristine magnetic field structure. We find that the filaments' FWHMs in PI are not the same as those in I, with two segments being appreciably narrower in PI (FWHM ratio similar or equal to 0.7-0.8) and one segment being wider (FWHM ratio similar or equal to 1.3). The filament profiles of the polarization fraction (P) do not show a minimum at the spine of the filament, which is not in line with an anticorrelation between P and I normally seen in molecular clouds and protostellar cores. Dust grain alignment variation with density cannot reproduce the observed P distribution. We demonstrate numerically that the I and PI cross-sectional profiles of filaments in magnetohydrostatic equilibrium will have differing relative widths depending on the viewing angle. The observed variations of FWHM ratios in NGC 1333 are therefore consistent with models of pinched magnetic field structures inside filaments, especially if they are magnetically near-critical or supercritical. |
Keyword | radiative torques molecular clouds polarization equilibrium Astronomy & Astrophysics |
Subtype | Article |
DOI | 10.3847/2041-8213/ac3cc1 |
Indexed By | SCI |
Language | 英语 |
WOS ID | WOS:000728084600001 |
Citation statistics | |
Document Type | 期刊论文 |
Identifier | http://ir.xao.ac.cn/handle/45760611-7/4709 |
Collection | 射电天文研究室_恒星形成与演化研究团组 |
Affiliation | 1.Department of Earth Science and Astronomy, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902, Japan; 2.National Astronomical Observatory of Japan, National Institutes of Natural Sciences, Osawa, Mitaka, Tokyo 181-8588, Japan; 3.SOFIA Science Center, Universities Space Research Association, NASA Ames Research Center, M.S. N232-12, Moffett Field, CA 94035, USA; 4.Centre de Recherche en Astrophysique du Québec (CRAQ), Université de Montréal, Département de Physique, C.P. 6128 Succ. Centre-ville, Montréal, QC H3C 3J7, Canada; 5.Aix Marseille Univ, CNRS, CNES, LAM, Marseille, France; 6.Institut de Recherche sur les Exoplanètes (iREx), Université de Montréal, Département de Physique, C.P. 6128 Succ. Centre-ville, Montréal, QC H3C 3J7, Canada; 7.Faculty of Education & Center for Educational Development and Support, Kagawa University, Saiwai-cho 1-1, Takamatsu, Kagawa, 760-8522, Japan; 8.Dominion Radio Astrophysical Observatory, Herzberg Astronomy and Astrophysics Research Centre, National Research Council Canada, P.O. Box 248, Penticton, BC V2A 6J9, Canada; 9.Department for Physics, Engineering Physics and Astrophysics, Queen’s University, Kingston, ON K7L 3N6, Canada; 10.National Astronomical Observatory of Japan, Alonso de Córdova 3788, Office 61B, 7630422, Vitacura, Santiago, Chile; 11.Joint ALMA Observatory, Alonso de Córdova 3107, Vitacura, Santiago, Chile; 12.Herzberg Astronomy and Astrophysics Research Centre, National Research Council of Canada, 5071 West Saanich Road, Victoria, BC V9E 2E7, Canada; 13.Department of Physics and Astronomy, University of Victoria, Victoria, BC V8P 5C2, Canada; 14.Department of Physics and Astronomy, Graduate School of Science and Engineering, Kagoshima University, 1-21-35 Korimoto, Kagoshima, Kagoshima 890-0065, Japan; 15.Institute of Liberal Arts and Sciences, Tokushima University, Minami Jousanajima-machi 1-1, Tokushima 770-8502, Japan; 16.Department of Astronomy, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; 17.Astrobiology Center, National Institutes of Natural Sciences, Osawa, Mitaka, Tokyo 181-8588, Japan; 18.Jeremiah Horrocks Institute, University of Central Lancashire, Preston PR1 2HE, UK; 19.European Southern Observatory, Alonso de Córdova 3107, Vitacura, Casilla 19001, Santiago, Chile; 20.Université Paris-Saclay, CNRS, CEA, Astrophysique, Instrumentation et Modélisation de Paris-Saclay, F-91191 Gif-sur-Yvette, France; 21.Korea Astronomy and Space Science Institute (KASI), 776 Daedeokdae-ro, Yuseong-gu, Daejeon 34055, Republic of Korea; 22.University of Science and Technology, Korea, 217 Gajang-ro, Yuseong-gu, Daejeon 34113, Republic of Korea; 23.Department of Physics and Astronomy, University College London, WC1E 6BT London, UK; 24.Indian Institute of Science Education and Research (IISER) Tirupati, Rami Reddy Nagar, Karakambadi Road, Mangalam (P.O.), Tirupati 517 507, India; 25.School of Physics and Astronomy, Cardiff University, The Parade, Cardiff, CF24 3AA, UK; 26.Department of Earth Science Education, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea; 27.SNU Astronomy Research Center, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea; 28.SKA Observatory, Jodrell Bank, Lower Withington, Macclesfield SK11 9FT, UK; 29.Jodrell Bank Centre for Astrophysics, School of Physics and Astronomy, University of Manchester, Oxford Road, Manchester, M13 9PL, UK; 30.Xinjiang Astronomical Observatory, Chinese Academy of Sciences, 830011 Urumqi, People’s Republic of China; 31.Department of Astronomy, Yunnan University, Kunming, 650091, People’s Republic of China; 32.School of Astronomy and Space Science, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, People’s Republic of China; 33.Key Laboratory of Modern Astronomy and Astrophysics (Nanjing University), Ministry of Education, Nanjing 210023, People’s Republic of China; 34.Institute of Astronomy and Department of Physics, National Tsing Hua University, Hsinchu 30013, Taiwan; 35.Academia Sinica Institute of Astronomy and Astrophysics, No. 1, Sec. 4., Roosevelt Road, Taipei 10617, Taiwan; 36.Department of Physics, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan |
Recommended Citation GB/T 7714 | Doi, Y.,Tomisaka, K.,Hasegawa, T.,et al. The JCMT BISTRO Survey: Evidence for Pinched Magnetic Fields in Quiescent Filaments of NGC 1333[J]. Astrophysical Journal Letters,2021,923(1):12L9. |
APA | Doi, Y..,Tomisaka, K..,Hasegawa, T..,Coude, S..,Arzoumanian, D..,...&Lai, S. P..(2021).The JCMT BISTRO Survey: Evidence for Pinched Magnetic Fields in Quiescent Filaments of NGC 1333.Astrophysical Journal Letters,923(1),12L9. |
MLA | Doi, Y.,et al."The JCMT BISTRO Survey: Evidence for Pinched Magnetic Fields in Quiescent Filaments of NGC 1333".Astrophysical Journal Letters 923.1(2021):12L9. |
Files in This Item: | ||||||
File Name/Size | DocType | Version | Access | License | ||
Doi-2021-The JCMT BI(1857KB) | 期刊论文 | 出版稿 | 开放获取 | CC BY-NC-SA | View Application Full Text |
Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.
Edit Comment