XAO OpenIR  > 射电天文研究室  > 天线技术实验室
基于线性数据重构的天线动力学模型辨识方法
Alternative TitleIdentification Method of Antenna Dynamic Models Based on Linear Data Reconstruction
侯晓拯1; 许谦1,2,3; 李琳4; 易乐天1; 薛飞1; 王惠1; 许多祥1,5; 何飞龙1,5
2022-09-01
Source Publication天文学报
ISSN0001-5245
Volume63Issue:5Pages:121-128
Contribution Rank1
Abstract射电望远镜天线伺服控制系统中的非线性特性,对系统动力学特性辨识有着显著的影响,会提高辨识难度,增加辨识模型的复杂程度.系统非线性特性的测量与补偿也会增加系统辨识工作量.针对上述问题,提出了一种基于非线性采样数据的线性重构方法,用于动力学特性建模.通过提取原采样数据的相位与幅值,对受到噪声与非线性畸变影响的系统采样数据进行线性重构,降低待辨识模型的复杂度.搭建了半实物实验平台,以平台实际采样为基础,重构线性数据,利用奇异值法与自回归神经网络评估并辨识平台动力学模型.实验结果表明,建模数据奇异值拐点从100阶下降至40阶,仅用10个神经网络节点200次训练即实现了模型辨识。
Other AbstractThe nonlinear characteristics of radio telescope servo control system have a negative significant influence on the system dynamics characteristics identification.The measurement and compensation of system nonlinear characteristics will also increase the workload of system identification.In this research,a linear reconstruction method based on nonlinear sampling data is proposed to model dynamic characteristics.By extracting the phase and amplitude of the original sampling data,linear reconstruction of the system sampling data influenced by noise and nonlinear distortion is carried out to reduce the complexity of the model to be identified.A semi-physical experiment platform was built.Based on the actual sampling data of the platform,the linear data were reconstructed,and the dynamics model of the platform was evaluated and identified by singular value method and autoregressive neural network.The experimental results show that the singular value inflection point is reduced from 100 order to 40 order,and model identification is achieved with only 200 trainings of 10 neural network nodes.
Keyword望远镜 方法:数据分析 技术:其他
DOI10.15940/j.cnki.0001-5245.2022.05.009
URL查看原文
Indexed ByCSCD ; 中文核心期刊要目总览
Language中文
CSCD IDCSCD:7312023
Citation statistics
Document Type期刊论文
Identifierhttp://ir.xao.ac.cn/handle/45760611-7/5089
Collection射电天文研究室_天线技术实验室
110米口径全可动射电望远镜(QTT)_技术成果
Corresponding Author许谦
Affiliation1.中国科学院新疆天文台 乌鲁木齐830011;
2.中国科学院射电天文重点实验室 乌鲁木齐830011;
3.新疆射电天体物理实验室 乌鲁木齐830011;
4.新疆大学物理科学与技术学院 乌鲁木齐830046;
5.中国科学院大学 北京100049
First Author AffilicationXinjiang Astronomical Observatory, Chinese Academy of Sciences
Corresponding Author AffilicationXinjiang Astronomical Observatory, Chinese Academy of Sciences
Recommended Citation
GB/T 7714
侯晓拯,许谦,李琳,等. 基于线性数据重构的天线动力学模型辨识方法[J]. 天文学报,2022,63(5):121-128.
APA 侯晓拯.,许谦.,李琳.,易乐天.,薛飞.,...&何飞龙.(2022).基于线性数据重构的天线动力学模型辨识方法.天文学报,63(5),121-128.
MLA 侯晓拯,et al."基于线性数据重构的天线动力学模型辨识方法".天文学报 63.5(2022):121-128.
Files in This Item:
File Name/Size DocType Version Access License
侯晓拯-2022-基于线性数据重构的天线(1361KB)期刊论文出版稿开放获取CC BY-NC-SAView Application Full Text
Related Services
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Google Scholar
Similar articles in Google Scholar
[侯晓拯]'s Articles
[许谦]'s Articles
[李琳]'s Articles
Baidu academic
Similar articles in Baidu academic
[侯晓拯]'s Articles
[许谦]'s Articles
[李琳]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[侯晓拯]'s Articles
[许谦]'s Articles
[李琳]'s Articles
Terms of Use
No data!
Social Bookmark/Share
File name: 侯晓拯-2022-基于线性数据重构的天线动力学模型辨识方法.pdf
Format: Adobe PDF
This file does not support browsing at this time
All comments (0)
No comment.
 

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.