XAO OpenIR  > 射电天文研究室  > 数字技术实验室
基于卷积神经网络的快速射电暴候选体分类
Alternative TitleFast Radio Burst Candidate Classification with Convolutional Neural Networks
刘艳玲1,2,3,4; 陈卯蒸1,2,3,4; 李健1,3,4; 闫浩1,3,4; 袁建平1,2,3
2022-07-01
Source Publication天文学报
ISSN0001-5245
Volume63Issue:4Pages:107-116
Contribution Rank1
Abstract针对目前从海量的快速射电暴(Fast Radio Burst, FRB)候选体中人工筛选FRB事件难以为继的现状,提出了一种基于卷积神经网络(Convolutional Neural Networks, CNN)的FRB候选体分类方法.首先,通过真实的观测数据和仿真FRB组成训练和测试样本集.其次,建立了二输入的深度卷积神经网络模型,并对其进行训练、测试和优化,获取FRB候选体分类器.最后,利用来自脉冲星的单脉冲数据对该分类器的有效性和性能进行了验证.实验结果表明,该方法可以快速从大量候选体中准确识别出单脉冲事件,极大地提高了FRB候选体的处理速率和效率.
Other AbstractManually identifying fast radio burst (FRB) events from the massive candidates by a human is a laborious and time-consuming task.It's an unsustainable working mode for the constantly growing volume of observation data.In this paper,we present a method of FRB candidates classification based on convolutional neural networks (CNN).First,we build training and test sets with real observation data and simulated FRBs.Second,a two-input deep convolutional neural network model is constructed,trained and optimized,and the FRB candidate classifier is obtained.Then,the effectiveness and performance of the classifier are tested and verified by using single pulses from pulsar.Experiment results show that this method can quickly and accurately identify single pulse events from candidates,which greatly improves the processing speed and efficiency of FRB candidates.
Keyword射电连续谱:暂现源 方法:数据分析 方法:分类
DOI10.15940/j.cnki.0001-5245.2022.04.011
URL查看原文
Indexed ByCSCD ; 中文核心期刊要目总览
Language中文
CSCD IDCSCD:7271935
Citation statistics
Document Type期刊论文
Identifierhttp://ir.xao.ac.cn/handle/45760611-7/5096
Collection射电天文研究室_数字技术实验室
Corresponding Author陈卯蒸
Affiliation1.中国科学院新疆天文台乌鲁木齐830011;
2.中国科学院大学北京100049;
3.中国科学院射电天文重点实验室南京210023;
4.新疆微波技术重点实验室乌鲁木齐830011
First Author AffilicationXinjiang Astronomical Observatory, Chinese Academy of Sciences
Corresponding Author AffilicationXinjiang Astronomical Observatory, Chinese Academy of Sciences
Recommended Citation
GB/T 7714
刘艳玲,陈卯蒸,李健,等. 基于卷积神经网络的快速射电暴候选体分类[J]. 天文学报,2022,63(4):107-116.
APA 刘艳玲,陈卯蒸,李健,闫浩,&袁建平.(2022).基于卷积神经网络的快速射电暴候选体分类.天文学报,63(4),107-116.
MLA 刘艳玲,et al."基于卷积神经网络的快速射电暴候选体分类".天文学报 63.4(2022):107-116.
Files in This Item:
File Name/Size DocType Version Access License
刘艳玲-2022-基于卷积神经网络的快速(1217KB)期刊论文出版稿开放获取CC BY-NC-SAView Application Full Text
Related Services
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Google Scholar
Similar articles in Google Scholar
[刘艳玲]'s Articles
[陈卯蒸]'s Articles
[李健]'s Articles
Baidu academic
Similar articles in Baidu academic
[刘艳玲]'s Articles
[陈卯蒸]'s Articles
[李健]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[刘艳玲]'s Articles
[陈卯蒸]'s Articles
[李健]'s Articles
Terms of Use
No data!
Social Bookmark/Share
File name: 刘艳玲-2022-基于卷积神经网络的快速射电暴候选体分类.pdf
Format: Adobe PDF
This file does not support browsing at this time
All comments (0)
No comment.
 

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.