XAO OpenIR  > 射电天文研究室  > 数字技术实验室
基于机器学习的快速射电暴搜寻方法综述
Alternative TitleA Review of Fast Radio Burst Search Methods Based on Machine Learning
刘艳玲1,2,3,4; 陈卯蒸1,2,3,4; 袁建平1,2,3
2022-09-01
Source Publication天文研究与技术
ISSN1672-7673
Volume19Issue:5Pages:509-517
Contribution Rank1
Abstract快速射电暴(Fast Radio Burst,FRB)是目前射电天文领域的主要热点前沿。其相关研究被《自然》(Nature)杂志评选为2020年十大科学发现之一。FRB爆发时间极短且鲜少重复的特点,使其观测捕捉到的概率极低。由人工从海量的天文观测数据中识别FRB事件是件耗时费力的工作。机器学习技术的蓬勃发展为实时搜寻与多频段联合跟踪观测FRB带来了可能。该文从传统机器学习方法和深度学习方法两个方面,对该研究已有的成果进行了分析与总结,并探讨了基于机器学习的FRB搜寻技术目前存在的问题和面临的挑战,分析了其未来发展趋势。
Other AbstractFast Radio Bursts( FRBs) are a hot topic in the field of astronomy at present. Its related research was also selected by the journal Nature as one of the top 10 scientific discoveries of 2020. The characteristics that FRBs are millisecond-duration and rarely repeated make them hard to be captured. Identifying FRBs from massive astronomical observation data by human review is a time-consuming and laborious task. With the rapid development of machine learning technology,it is possible to carry out a realtime search and multi-frequency tracking for FRB events. This paper analyzes and summarizes the existing representative results from two aspects: traditional machine learning method and deep learning method. Finally,the existing problems and challenges of FRB search technology based on machine learning are discussed,and future development trend is also analyzed. In the near future,deep learning technology will be more widely used and become a powerful tool to search for FRBs efficiently.
Keyword快速射电暴 机器学习 搜寻方法 深度学习 射电天文
DOI10.14005/j.cnki.issn1672-7673.20210916.001
URL查看原文
Indexed ByCSCD
Language中文
CSCD IDCSCD:7304909
Citation statistics
Cited Times:1[CSCD]   [CSCD Record]
Document Type期刊论文
Identifierhttp://ir.xao.ac.cn/handle/45760611-7/5097
Collection射电天文研究室_数字技术实验室
Corresponding Author陈卯蒸
Affiliation1.中国科学院新疆天文台 新疆 乌鲁木齐 830011;
2.中国科学院大学 北京 100049;
3.中国科学院射电天文重点实验室 江苏 南京 210033;
4.新疆微波技术重点实验室 新疆 乌鲁木齐 830011
First Author AffilicationXinjiang Astronomical Observatory, Chinese Academy of Sciences
Corresponding Author AffilicationXinjiang Astronomical Observatory, Chinese Academy of Sciences
Recommended Citation
GB/T 7714
刘艳玲,陈卯蒸,袁建平. 基于机器学习的快速射电暴搜寻方法综述[J]. 天文研究与技术,2022,19(5):509-517.
APA 刘艳玲,陈卯蒸,&袁建平.(2022).基于机器学习的快速射电暴搜寻方法综述.天文研究与技术,19(5),509-517.
MLA 刘艳玲,et al."基于机器学习的快速射电暴搜寻方法综述".天文研究与技术 19.5(2022):509-517.
Files in This Item:
File Name/Size DocType Version Access License
刘艳玲-2022-基于机器学习的快速射电(5127KB)期刊论文出版稿开放获取CC BY-NC-SAView Application Full Text
Related Services
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Google Scholar
Similar articles in Google Scholar
[刘艳玲]'s Articles
[陈卯蒸]'s Articles
[袁建平]'s Articles
Baidu academic
Similar articles in Baidu academic
[刘艳玲]'s Articles
[陈卯蒸]'s Articles
[袁建平]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[刘艳玲]'s Articles
[陈卯蒸]'s Articles
[袁建平]'s Articles
Terms of Use
No data!
Social Bookmark/Share
File name: 刘艳玲-2022-基于机器学习的快速射电暴搜寻方法综述.pdf
Format: Adobe PDF
This file does not support browsing at this time
All comments (0)
No comment.
 

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.