XAO OpenIR  > 射电天文研究室  > 理论天体物理研究团组
Identifying Symbiotic Stars with Machine Learning
Jia, Yongle1; Guo, Sufen1; Zhu, Chunhua1; Li, Lin1; Ma, Mei1; Lu, Guoliang2
2023-10-01
Source PublicationRESEARCH IN ASTRONOMY AND ASTROPHYSICS
ISSN1674-4527
Volume23Issue:10Pages:105012
Contribution Rank2
AbstractSymbiotic stars are interacting binary systems, making them valuable for studying various astronomical phenomena, such as stellar evolution, mass transfer, and accretion processes. Despite recent progress in the discovery of symbiotic stars, a significant discrepancy between the observed population of symbiotic stars and the number predicted by theoretical models. To bridge this gap, this study utilized machine learning techniques to efficiently identify new symbiotic star candidates. Three algorithms (XGBoost, LightGBM, and Decision Tree) were applied to a data set of 198 confirmed symbiotic stars and the resulting model was then used to analyze data from the LAMOST survey, leading to the identification of 11,709 potential symbiotic star candidates. Out of these potential symbiotic star candidates listed in the catalog, 15 have spectra available in the Sloan Digital Sky Survey (SDSS) survey. Among these 15 candidates, two candidates, namely V* V603 Ori and V* GN Tau, have been confirmed as symbiotic stars. The remaining 11 candidates have been classified as accreting-only symbiotic star candidates. The other two candidates, one of which has been identified as a galaxy by both SDSS and LAMOST surveys, and the other identified as a quasar by SDSS survey and as a galaxy by LAMOST survey.
Keyword(stars:) binaries: symbiotic techniques: spectroscopic (stars:) binaries: spectroscopic methods: data analysis
DOI10.1088/1674-4527/ace9b2
Indexed BySCI
Language英语
WOS KeywordALL-SKY SURVEY ; SPECTROSCOPIC OBSERVATIONS ; SPECTRAL CLASSIFICATION ; POPULATION SYNTHESIS ; DECISION TREES ; MASS-TRANSFER ; DATA RELEASE ; ASTROPY ; IDENTIFICATION ; CLASSIFIERS
Funding ProjectNatural Science Foundation of Xinjiang[2021D01C075] ; National Natural Science Foundation of China[12163005] ; National Natural Science Foundation of China[12003025] ; National Natural Science Foundation of China[U2031204] ; National Natural Science Foundation of China[11863005] ; National Natural Science Foundation of China[12288102] ; China Manned Space Project[CMS-CSST-2021-A10] ; Scientific Research Program of the Higher Education Institution of Xinjiang[XJEDU2022P003] ; Astronomical Big Data Joint Research Center ; National Aeronautics and Space Administration ; National Development and Reform Commission ; U.S. Department of Energy Office of Science ; Brazilian Participation Group ; Carnegie Institution for Science ; Carnegie Mellon University ; Center for Astrophysics | Harvard amp ; Smithsonian ; Kavli Institute for the Physics and Mathematics of the Universe (IPMU)/University of Tokyo ; Korean Participation Group ; Lawrence Berkeley National Laboratory ; Leibniz Institut fuer Astrophysik Potsdam (AIP) ; Max-Planck-Institut fuer Astronomie (MPIA Heidelberg) ; Max-Planck-Institut fuer Astrophysik (MPA Garching) ; Max-Planck-Institut fuer Extraterrestrische Physik (MPE) ; National Astronomical Observatories of China ; New Mexico State University ; New York University ; University of Notre Dame ; Observatario Nacional/MCTI ; Ohio State University ; Pennsylvania State University ; Shanghai Astronomical Observatory ; United Kingdom Participation Group ; Universidad Nacional Autonoma de Mexico ; University of Arizona ; University of Colorado Boulder ; University of Oxford ; University of Portsmouth ; University of Utah ; University of Virginia ; University of Washington ; University of Wisconsin ; Vanderbilt University ; Yale University
WOS Research AreaAstronomy & Astrophysics
WOS SubjectAstronomy & Astrophysics
WOS IDWOS:001073964400001
PublisherNATL ASTRONOMICAL OBSERVATORIES, CHIN ACAD SCIENCES
Funding OrganizationNatural Science Foundation of Xinjiang ; National Natural Science Foundation of China ; China Manned Space Project ; Scientific Research Program of the Higher Education Institution of Xinjiang ; Astronomical Big Data Joint Research Center ; National Aeronautics and Space Administration ; National Development and Reform Commission ; U.S. Department of Energy Office of Science ; Brazilian Participation Group ; Carnegie Institution for Science ; Carnegie Mellon University ; Center for Astrophysics | Harvard amp ; Smithsonian ; Kavli Institute for the Physics and Mathematics of the Universe (IPMU)/University of Tokyo ; Korean Participation Group ; Lawrence Berkeley National Laboratory ; Leibniz Institut fuer Astrophysik Potsdam (AIP) ; Max-Planck-Institut fuer Astronomie (MPIA Heidelberg) ; Max-Planck-Institut fuer Astrophysik (MPA Garching) ; Max-Planck-Institut fuer Extraterrestrische Physik (MPE) ; National Astronomical Observatories of China ; New Mexico State University ; New York University ; University of Notre Dame ; Observatario Nacional/MCTI ; Ohio State University ; Pennsylvania State University ; Shanghai Astronomical Observatory ; United Kingdom Participation Group ; Universidad Nacional Autonoma de Mexico ; University of Arizona ; University of Colorado Boulder ; University of Oxford ; University of Portsmouth ; University of Utah ; University of Virginia ; University of Washington ; University of Wisconsin ; Vanderbilt University ; Yale University
Citation statistics
Cited Times:7[WOS]   [WOS Record]     [Related Records in WOS]
Document Type期刊论文
Identifierhttp://ir.xao.ac.cn/handle/45760611-7/5446
Collection射电天文研究室_理论天体物理研究团组
Corresponding AuthorGuo, Sufen
Affiliation1.Xinjiang Univ, Sch Phys Sci & Technol, Urumqi 830046, Peoples R China
2.Chinese Acad Sci, Xinjiang Astron Observ, Urumqi 830011, Peoples R China
Recommended Citation
GB/T 7714
Jia, Yongle,Guo, Sufen,Zhu, Chunhua,et al. Identifying Symbiotic Stars with Machine Learning[J]. RESEARCH IN ASTRONOMY AND ASTROPHYSICS,2023,23(10):105012.
APA Jia, Yongle,Guo, Sufen,Zhu, Chunhua,Li, Lin,Ma, Mei,&Lu, Guoliang.(2023).Identifying Symbiotic Stars with Machine Learning.RESEARCH IN ASTRONOMY AND ASTROPHYSICS,23(10),105012.
MLA Jia, Yongle,et al."Identifying Symbiotic Stars with Machine Learning".RESEARCH IN ASTRONOMY AND ASTROPHYSICS 23.10(2023):105012.
Files in This Item:
File Name/Size DocType Version Access License
Jia-2023-Identifying(1298KB)期刊论文出版稿开放获取CC BY-NC-SAView Application Full Text
Related Services
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Google Scholar
Similar articles in Google Scholar
[Jia, Yongle]'s Articles
[Guo, Sufen]'s Articles
[Zhu, Chunhua]'s Articles
Baidu academic
Similar articles in Baidu academic
[Jia, Yongle]'s Articles
[Guo, Sufen]'s Articles
[Zhu, Chunhua]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[Jia, Yongle]'s Articles
[Guo, Sufen]'s Articles
[Zhu, Chunhua]'s Articles
Terms of Use
No data!
Social Bookmark/Share
File name: Jia-2023-Identifying Symbiotic Stars with Mach.pdf
Format: Adobe PDF
This file does not support browsing at this time
All comments (0)
No comment.
 

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.