Institutional Repository of Radio Astronomy Research Laboratory
Sulfur isotope ratios in the Large Magellanic Cloud | |
Gong, Y.1; Henkel, C.1,2; Menten, K. M.1; Chen, C. -H. R.1; Zhang, Z. Y.3; Yan, Y. T.1; Weiss, A.1; Langer, N.4; Wang, J. Z.5; Mao, R. Q.6,7; Tang, X. D.2,7,8![]() | |
2023-11-01 | |
Source Publication | Astronomy and Astrophysics
![]() |
ISSN | 0004-6361 |
Volume | 679Pages:L6 |
Contribution Rank | 2 |
Abstract | Context. Sulfur isotope ratios have emerged as a promising tool for tracing stellar nucleosynthesis, quantifying stellar populations, and investigating the chemical evolution of galaxies. While they are extensively studied in the context of the Milky Way, they still remain largely unexplored in extragalactic environments. Aims: We focus on investigating the sulfur isotope ratios in the Large Magellanic Cloud (LMC) to gain insights into sulfur enrichment in this nearby system and to establish benchmarks for such ratios in metal-poor galaxies. Methods: We conducted pointed observations of CS and its isotopologues toward N113, one of the most prominent star-formation regions in the LMC, utilizing the Atacama Pathfinder EXperiment 12 m telescope. Results: We present the first robust detection of C33S in the LMC by successfully identifying two C33S transitions on a large scale of ∼5 pc. Our measurements result in an accurate determination of the 34S/33S isotope ratio, which is 2.0 ± 0.2. Our comparative analysis indicates that the 32S/33S and 34S/33S isotope ratios are about a factor of two lower in the LMC than in the Milky Way. Conclusions: Our findings suggest that the low 34S/33S isotope ratio in the LMC can be attributed to a combination of the age effect, low metallicity, and star formation history. |
Keyword | ISM: clouds radio lines: ISM ISM: individual objects: N113 ISM: molecules Astrophysics - Astrophysics of Galaxies |
DOI | 10.1051/0004-6361/202348017 |
URL | 查看原文 |
Indexed By | SCI |
Language | 英语 |
Citation statistics | |
Document Type | 期刊论文 |
Identifier | http://ir.xao.ac.cn/handle/45760611-7/6641 |
Collection | 射电天文研究室_恒星形成与演化研究团组 |
Corresponding Author | Gong, Y. |
Affiliation | 1.Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, 53121 Bonn, Germany, e-mail: ygong@mpifr-bonn.mpg.de; 2.Xinjiang Astronomical Observatory, Chinese Academy of Sciences, 150 Science 1-Street, Urumqi, Xinjiang 830011, PR China; 3.School of Astronomy & Space Science, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, PR China; 4.Argelander-Institut für Astronomie, Universität Bonn, Auf dem Hügel 71, 53121 Bonn, Germany; 5.Guangxi Key Laboratory for Relativistic Astrophysics, Department of Physics, Guangxi University, Nanning 530004, PR China; 6.Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210023, PR China; 7.Key Laboratory of Radio Astronomy, Chinese Academy of Sciences, Nanjing 210023, PR China; 8.University of Chinese Academy of Sciences, Beijing 100049, PR China |
Recommended Citation GB/T 7714 | Gong, Y.,Henkel, C.,Menten, K. M.,et al. Sulfur isotope ratios in the Large Magellanic Cloud[J]. Astronomy and Astrophysics,2023,679:L6. |
APA | Gong, Y..,Henkel, C..,Menten, K. M..,Chen, C. -H. R..,Zhang, Z. Y..,...&Wang, M..(2023).Sulfur isotope ratios in the Large Magellanic Cloud.Astronomy and Astrophysics,679,L6. |
MLA | Gong, Y.,et al."Sulfur isotope ratios in the Large Magellanic Cloud".Astronomy and Astrophysics 679(2023):L6. |
Files in This Item: | ||||||
File Name/Size | DocType | Version | Access | License | ||
Gong-2023-Sulfur iso(389KB) | 期刊论文 | 出版稿 | 开放获取 | CC BY-NC-SA | View Application Full Text |
Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.
Edit Comment