Institutional Repository of Optical Astronomy Research Laboratory
Assessment of LiDAR-Based Atmospheric Observations Using YOLOv9 for Sky Image Recognition | |
Xu, Long1,2; Lin, Xin3; Liu, Linmei3; Wang, Jiqin3; Lin, Xingkui4![]() ![]() | |
2025 | |
Source Publication | IEEE SENSORS JOURNAL
![]() |
ISSN | 1530-437X |
Volume | 25Issue:1Pages:1825-1838 |
Contribution Rank | 3 |
Abstract | This study introduces an innovative method to improve the quality and accuracy of LiDAR observation data using YOLOv9 image recognition technology. By correlating daytime cloud image grayscale values and nighttime sky star counts with LiDAR data, this method provides a robust solution for all-weather observations. Experimental results show that this technique can accurately predict LiDAR data quality under various environmental conditions, offering a valuable tool for atmospheric science research and meteorological monitoring. |
Keyword | Atmospheric modeling Laser radar Clouds Accuracy Meteorology Data models Atmospheric measurements Stars Predictive models Image recognition Atmospheric detection data quality assessment environmental monitoring image recognition LiDAR YOLOv9 |
DOI | 10.1109/JSEN.2024.3491303 |
Indexed By | SCI |
Language | 英语 |
WOS Keyword | 105 KM ALTITUDE |
Funding Project | National Natural Science Foundation of China[42305152] ; National Key Research and Development Program of China[2022YFC2807201] ; Chinese Meridian Project(CMP) |
WOS Research Area | Engineering ; Instruments & Instrumentation ; Physics |
WOS Subject | Engineering, Electrical & Electronic ; Instruments & Instrumentation ; Physics, Applied |
WOS ID | WOS:001389581900005 |
Publisher | IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC |
Funding Organization | National Natural Science Foundation of China ; National Key Research and Development Program of China ; Chinese Meridian Project(CMP) |
Citation statistics | |
Document Type | 期刊论文 |
Identifier | http://ir.xao.ac.cn/handle/45760611-7/7363 |
Collection | 光学天文与技术应用研究室_光学天文技术研究团组 |
Corresponding Author | Lin, Xin |
Affiliation | 1.Univ Chinese Acad Sci, Innovat Acad Precis Measurement Sci & Technol, Beijing 101408, Peoples R China 2.Chinese Acad Sci, Innovat Acad Precis Measurement Sci & Technol, Wuhan 100049, Peoples R China 3.Chinese Acad Sci, Innovat Acad Precis Measurement Sci & Technol, Wuhan 100864, Peoples R China 4.Chinese Acad Sci, Xinjiang Astron Observ, Xinjiang 830011, Peoples R China 5.South Cent Minzu Univ, Coll Elect & Informat Engn, Hubei Key Lab Intelligent Wireless Commun, Wuhan 430074, Peoples R China |
Recommended Citation GB/T 7714 | Xu, Long,Lin, Xin,Liu, Linmei,et al. Assessment of LiDAR-Based Atmospheric Observations Using YOLOv9 for Sky Image Recognition[J]. IEEE SENSORS JOURNAL,2025,25(1):1825-1838. |
APA | Xu, Long.,Lin, Xin.,Liu, Linmei.,Wang, Jiqin.,Lin, Xingkui.,...&Li, Faquan.(2025).Assessment of LiDAR-Based Atmospheric Observations Using YOLOv9 for Sky Image Recognition.IEEE SENSORS JOURNAL,25(1),1825-1838. |
MLA | Xu, Long,et al."Assessment of LiDAR-Based Atmospheric Observations Using YOLOv9 for Sky Image Recognition".IEEE SENSORS JOURNAL 25.1(2025):1825-1838. |
Files in This Item: | ||||||
File Name/Size | DocType | Version | Access | License | ||
Xu-2024-Assessment o(9227KB) | 期刊论文 | 出版稿 | 开放获取 | CC BY-NC-SA | View Application Full Text |
Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.
Edit Comment