XAO OpenIR  > 光学天文与技术应用研究室  > 光学天文技术研究团组
Assessment of LiDAR-Based Atmospheric Observations Using YOLOv9 for Sky Image Recognition
Xu, Long1,2; Lin, Xin3; Liu, Linmei3; Wang, Jiqin3; Lin, Xingkui4; Bai, Chunhai4; Lin, Zhaoxiang5; Wang, Wei3; Yang, Yong3; Cheng, Xuewu3; Li, Faquan3
2025
Source PublicationIEEE SENSORS JOURNAL
ISSN1530-437X
Volume25Issue:1Pages:1825-1838
Contribution Rank3
AbstractThis study introduces an innovative method to improve the quality and accuracy of LiDAR observation data using YOLOv9 image recognition technology. By correlating daytime cloud image grayscale values and nighttime sky star counts with LiDAR data, this method provides a robust solution for all-weather observations. Experimental results show that this technique can accurately predict LiDAR data quality under various environmental conditions, offering a valuable tool for atmospheric science research and meteorological monitoring.
KeywordAtmospheric modeling Laser radar Clouds Accuracy Meteorology Data models Atmospheric measurements Stars Predictive models Image recognition Atmospheric detection data quality assessment environmental monitoring image recognition LiDAR YOLOv9
DOI10.1109/JSEN.2024.3491303
Indexed BySCI
Language英语
WOS Keyword105 KM ALTITUDE
Funding ProjectNational Natural Science Foundation of China[42305152] ; National Key Research and Development Program of China[2022YFC2807201] ; Chinese Meridian Project(CMP)
WOS Research AreaEngineering ; Instruments & Instrumentation ; Physics
WOS SubjectEngineering, Electrical & Electronic ; Instruments & Instrumentation ; Physics, Applied
WOS IDWOS:001389581900005
PublisherIEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
Funding OrganizationNational Natural Science Foundation of China ; National Key Research and Development Program of China ; Chinese Meridian Project(CMP)
Citation statistics
Cited Times:1[WOS]   [WOS Record]     [Related Records in WOS]
Document Type期刊论文
Identifierhttp://ir.xao.ac.cn/handle/45760611-7/7363
Collection光学天文与技术应用研究室_光学天文技术研究团组
Corresponding AuthorLin, Xin
Affiliation1.Univ Chinese Acad Sci, Innovat Acad Precis Measurement Sci & Technol, Beijing 101408, Peoples R China
2.Chinese Acad Sci, Innovat Acad Precis Measurement Sci & Technol, Wuhan 100049, Peoples R China
3.Chinese Acad Sci, Innovat Acad Precis Measurement Sci & Technol, Wuhan 100864, Peoples R China
4.Chinese Acad Sci, Xinjiang Astron Observ, Xinjiang 830011, Peoples R China
5.South Cent Minzu Univ, Coll Elect & Informat Engn, Hubei Key Lab Intelligent Wireless Commun, Wuhan 430074, Peoples R China
Recommended Citation
GB/T 7714
Xu, Long,Lin, Xin,Liu, Linmei,et al. Assessment of LiDAR-Based Atmospheric Observations Using YOLOv9 for Sky Image Recognition[J]. IEEE SENSORS JOURNAL,2025,25(1):1825-1838.
APA Xu, Long.,Lin, Xin.,Liu, Linmei.,Wang, Jiqin.,Lin, Xingkui.,...&Li, Faquan.(2025).Assessment of LiDAR-Based Atmospheric Observations Using YOLOv9 for Sky Image Recognition.IEEE SENSORS JOURNAL,25(1),1825-1838.
MLA Xu, Long,et al."Assessment of LiDAR-Based Atmospheric Observations Using YOLOv9 for Sky Image Recognition".IEEE SENSORS JOURNAL 25.1(2025):1825-1838.
Files in This Item:
File Name/Size DocType Version Access License
Xu-2024-Assessment o(9227KB)期刊论文出版稿开放获取CC BY-NC-SAView Application Full Text
Related Services
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Google Scholar
Similar articles in Google Scholar
[Xu, Long]'s Articles
[Lin, Xin]'s Articles
[Liu, Linmei]'s Articles
Baidu academic
Similar articles in Baidu academic
[Xu, Long]'s Articles
[Lin, Xin]'s Articles
[Liu, Linmei]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[Xu, Long]'s Articles
[Lin, Xin]'s Articles
[Liu, Linmei]'s Articles
Terms of Use
No data!
Social Bookmark/Share
File name: Xu-2024-Assessment of LiDAR-Based Atmospheric.pdf
Format: Adobe PDF
This file does not support browsing at this time
All comments (0)
No comment.
 

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.